Peripheral Arterial Disease in Hemodialysed Patients

Ileana Peride1,2, Daniela Rădulescu1,2, Andrei Niculae1,2, Alice Bălăceanu3,4, Ileana Adela Văcăroiu1,2, Ruxandra Diana Sinescu5,6, Ionel Alexandru Checheriță1,2

1Clinical Department No 3, “Carol Davila” University of Medicine and Pharmacy Bucharest, Romania
2Department of Nephrology and Dialysis, “St. John” Emergency Clinical Hospital Bucharest, Romania
3Clinical Department No 1, “Carol Davila” University of Medicine and Pharmacy Bucharest, Romania
4Department of internal Medicine, “St. John” Emergency Clinical Hospital Bucharest, Romania
5Clinical Department No 11, “Carol Davila” University of Medicine and Pharmacy Bucharest, Romania
6Department of Plastic Surgery and Reconstructive Microsurgery, “Elias” Emergency University Hospital Bucharest, Romania

ABSTRACT

Nowadays, peripheral artery disease (PAD) is often emphasized in hemodialysed population, especially in patients associating diabetes mellitus and a long-term tobacco addiction. Considering the worldwide high prevalence of dialysed individuals, we present two particular cases of chronic hemodialysed patients diagnosed with peripheral artery disease, even in the absence of usually incriminated risk factors. Our report highlights that the underlying conditions responsible for PAD development and progression are far from being entirely comprehended and further clinical and experimental trials are required to a better understanding of the pathophysiological mechanisms and the role of oxidative stress and chronic inflammation in the onset of this disorder.

Key words: peripheral artery disease, oxidative stress, chronic inflammation, hemodialysis, outcome

INTRODUCTION

There is increased evidence that the prevalence of peripheral artery disease (PAD) in hemodialysed patients is higher than in general population [1,2]. According to ACC/AHA (American College of Cardiology / American College of Cardiology) guidelines, treatment of PAD in dialysed patients should include measures to lower cholesterol and blood pressure, and smoking cessation.

Corresponding author: Lecturer Ileana PERIDE, MD, PhD
Clinical Department No 3, “Carol Davila” University of Medicine and Pharmacy
37th Dionisie Lupu Street, 020022, Bucharest, Romania e-mail: ileana_peride@yahoo.com
Heart Association) guidelines, the following risk factors are associated with PAD [3,4]:

- male gender;
- age over 70 years or > 40 in diabetic and/or smokers patients;
- smoking;
- diabetes mellitus;
- atherosclerosis (personal and/or family history);
- dyslipidemia;
- systemic hypertension;
- hyperhomocysteinemia;
- presence of intermittent claudication, ischemic pain at rest, non-healing ulceration or gangrene;
- decreased pulse of lower limbs.

Additionally, the diagnosis is confirmed when an ankle-brachial index below 0.9 is emphasized correlated with abnormal physiologic (e.g.: segmental pressures, pulse volume recordings) and/or vascular imaging tests (e.g.: duplex ultrasound, arteriography) [3,5].

Over the years, considering the increased oxidative stress and inflammatory state linked to this disease, among other incriminated pathophysiological mechanisms, several therapeutically options have been proposed in order to slow PAD progression – antichlamydia treatment [6-9], antioxidants [10-15], phosphodiesterase inhibitors [16-21], prostanoids [22-32], angiotensin-convert enzyme inhibitors [33-39] or endothelin-1 receptor antagonist [40-44] administration, hemodilution [45-50], immune modulation [51-58], stem cells [59-64] or hyperbaric oxygen therapy etc; although consistent progresses have been made, percutaneous or surgical revascularization still remains the gold standard treatment [65].

As previously highlighted, PAD is often diagnosed in dialysed patients, especially in chronic hemodialysed population, probably due to various associated risk factors related to chronic kidney disease and also to this method of renal replacement therapy [66]. Therefore, we present two cases of chronic hemodialysed male patients to whom PAD was confirmed. The particularity of our report is that both of them, although < 70 years, did not associated diabetes mellitus or smoking history, usually coexistent conditions in this age group individuals with confirmed PAD diagnosis.

CASE DESCRIPTION

The first case is regarding a 64 years chronic hemodialysed oliguric male (diuresis < 300 mL/24h), known with hypertensive nephropathy (as primary renal disease) and dyslipidemia therapeutically controlled (10 mg statin daily). In August 2014, he was admitted for intermittent claudication and ischemic pain at rest. The laboratory tests highlighted elevated nitrogenous waste products (urate acid = 6.18 mg/dL, creatinine = 8.48 mg/dL, BUN = 69.21 mg/dL – equivalent to blood urea of 148.3 mg/dL), cholesterol = 314.25 mg/dL and tri-glycerides = 180.45 mg/dL, secondary anemia (hemoglobin = 10.50 g/dL), decreased serum iron (57.70 μg/dL), inflammatory status (erythrocytes sedimentation rate = 87 mm/h, fibrinogen = 845 mg/dL), and metabolic acidosis (pH = 7.319, HCO3- = 20.10 mmol/L); the rest of the analysis were in normal range. Additionally, the physical exam emphasized a decreased pulse of the lower limbs and an increased blood pressure (175/100 mmHg). PAD was suspected and therefore an arteriography of the lower limbs was performed in the Interventional Angiography-Cardiology Laboratory of our hospital. The results revealed important atherosclerotic vascular lesions with severe stenosis – 75% stenosis at the origin of left common iliac artery versus 30 – 50% in the opposite limb, and 80% stenosis at the origin of right superficial femoral artery (Fig. 1 – 5).

PAD diagnosis was confirmed and revascularization treatment was indicated, but the patient declined. Currently, his therapy consists in peripheral vasodilator, antithrombotic, antiplatelet medication concomitant with statin and hypotensive drugs administration, and allopurinol 100 mg/day, alpha-D3 0,5 μg/day, epoetin beta 5 000 UI (twice per week), iron sucrose supplementation (1 dose per week).

In the second report we described a similar case of a 46 years oliguric male (diuresis < 250 mL/24h), on chronic hemodialysis since 1999, also known with hypertensive nephropathy, dyslipidemia, and no history of smoking or diabetes mellitus. He was admitted in our Department for intermittent claudication and ischemic pain at rest. In addition, his personal medical records revealed an episode of stroke in 2000 with recovered right hemiparesis. The laboratory tests emphasized elevated nitrogenous waste products (creatinine = 7.56 mg/dL, BUN = 64.17 mg/dL – equivalent to blood urea of 137.5 mg/dL), cholesterol = 324.64 mg/dL and triglycerides = 215.15 mg/dL, secondary anemia (hemoglobin = 11 g/dL), decreased serum iron (47.65 μg/dL), inflammatory status (erythrocytes sedimentation rate = 79 mm/h, fibrinogen = 715 mg/dL), and metabolic acidosis (pH = 7.32, HCO3- = 20.90 mmol/L); the rest of the analysis were in normal range. On admission, the physical exam emphasized the absence of the pulse at femoral arteries and an increased blood pressure (180/100 mmHg). PAD was suspected, but arteriography of the lower limbs could not be performed because the patient presented a viable right radiocephalic arteriovenous fistula, a thrombosed vascular access at the left upper limb and no pulse in the femoral arteries. Therefore, thoracic, abdominal and pelvic angio-CT was recommended (performed in the Imagistic Laboratory of our hospital), revealing: aortic athero-sclerotic lesions extended up to the descendant part and aortic arch, atherosclerotic lesions, partially obstructive, in the pelvic arteries, calcified thrombus that partially obstructs the aortic fork (80 – 90% of the caliber), extended up to right common iliac artery, and atherosclerotic injuries in both femoral arteries – 70% stenosis of
Peripheral Arterial Disease in Hemodialysed Patients

Once again, PAD diagnosis was confirmed and several surgical procedures were indicated, but the patient refused, continuing with the palliative therapy (peripheral vasodilator, antithrombotic, antiplatelet drugs) associated with statin, antihypertensives, alpha-D3 0.5 μg/day, epoetin beta 5 000 UI (twice per week), and iron sucrose supplementation (1 dose per week).

DISCUSSIONS

It is already proven that end-stage renal disease, especially after hemodialysis initiation, is associated with
increased oxidative stress and inflammatory state [67]. Furthermore, there are consistent data suggesting that not only dialysis per se is an important cause of reactive oxygen species and inflammatory cytokines synthesis, but also the skeletal muscles of these patients are proved to contribute in initiating and elevating the oxidative stress [67], often incriminated in the progression of arteriosclerosis, and consequently in PAD development [68-71].

Another possible explanation for the onset of PAD in hemodialysed patients, even in the absence of diabetes mellitus and long-term smoking history, is provided by the anticoagulant therapy administered in this particular group of population. There are studies concluding that heparin treatment can induce anti-platelet factor 4/heparin antibody synthesis which was correlated with abnormal ankle brachial index values in hemodialysed patients, contributing in this manner to a higher susceptibility of PAD development and progression [72].

Other clinical trials emphasized a clear correlation between low-density lipoprotein apheresis and improvement of oxidative stress and consequently of the PAD symptomatology, but the underlying mechanisms are still not entirely understood [68].

Our findings reporting PAD in long-term hemodialysed patients in the absence of diabetes mellitus and tobacco abuse are in accordance with literature data which describe a possible link between oxidative stress and important inflammatory state induced by several factors (dialysis per se, administered therapy etc) and PAD onset and evolution in this category of individuals.

CONCLUSIONS

Although significant progresses have been achieved for a correct perception of the complexity of the underlying conditions responsible for initiating and progression of peripheral artery disease, further experimental and clinical trials are required to understand the magnitude of this problem in order to include oxidative stress and chronic inflammation as pieces in a bigger puzzle, and to improve the therapy management in order to slow the pathophysiological mechanisms responsible for the evolution of this disease.

Acknowledgement

“This work received financial support through the project entitled "CERO – Career profile: Romanian Researcher", grant number POSDRU/ 159/1.5/S/135760, cofinanced by the European Social Fund for Sectoral Operational Programme Human Resources Development 2007-2013.”
Peripheral Arterial Disease in Hemodialysed Patients

Figure 7. Calcified thrombus that partially obstructs the aortic fork, extended up to right common iliac artery (a. coronary plane; b. sagittal plane; c and d. axial plane)

REFERENCES

7. Vainas T, Stassen FR, Schurink GW, Tordoir JH, Welten RJ, van den Akker LH, Kurvers HA, Bruggeman CA, Kitzlaar PJ. Sec-
ondary prevention of atherosclerosis through chlamydia pneumoni-
ae eradication (SPACE Trial): a randomised clinical trial in patients
with peripheral arterial disease. Eur J Vasc Endovasc Surg. 2005;
29(4):403-411.
8. Wiesli P, Czerwenka W, Meniconi A, Maly FE, Hoffmann U, Vet-
ter W, Schulthess G. Roxithromycin treatment prevents progres-
sion of peripheral arterial occlusive disease in Chlamydia pneumo-
niae seropositive men: a randomized, double-blind, placebo-con-
LA, Hiatt WR. Anti-clamydial antibiotic therapy for symptom
improvement in peripheral artery disease: prospective evaluation of
riluzole effect on vascular symptoms of intermittent claudication
and other endpoints in Chlamydia pneumoniae seropositive patients
10. Bras EP. Intermittent claudication: new targets for drug develop-
supplementation with (n-3) PUFAs, oleic acid, folic acid, and vita-
mins B-6 and E increases pain-free walking distance and improves
13. Violi F, Loffredo L, Mancini A, Marcocci A. Antioxidants in per-
tathione infusion on leg arterial circulation, cutaneous microcircu-
lation, and pain-free walking distance in patients with peripheral
obstructive arterial disease: a randomized, double-blind, placebo-
15. Mohler ER 3rd, Gainer JL, Whitten K, Eraso LH, Thanaporn PK,
Bauer T. Evaluation of trans sodium crocetinate on safety and exer-
cise performance in patients with peripheral artery disease and
S. K-134, a phosphodiesterase 3 inhibitor, improves gait disturbance
and hindlimb blood flow impairment in rat peripheral artery disease
17. Yoshida H, Itoh S, Haru T, Sasaki Y, Kondo S, Nakagawa T,
Assanuma A, Tanabe S. A phosphodiesterase 3 inhibitor, K-134,
Improves hindlimb skeletal muscle circulation in rat models of
A, Ito Y, Takahashi N, Niishiyama T, Sugimoto N, Taka-
hashi K, Tsuruzoe N, Nakaie S. NT-702 (parogrelil hydrochloride,
NM-702), a novel and potent phosphodiesterase inhibitor,
improves reduced walking distance and lowered hindlimb plantar
surface temperature in a rat experimental intermittent claudication
novel phosphodiesterase inhibitor NM-702 improves claudication-
limited exercise performance in patients with peripheral arterial
20. Bras EP, Cooper LT, Morgan RE, Hiatt WR. A phase II dose-
ranging study of the phosphodiesterase inhibitor K-134 in patients
21. Lewis RJ, Connor JT, Teerlink JR, Murphy JR, Cooper LT, Hiatt
WR, Bras EP. Application of adaptive design and decision making
to a phase II trial of a phosphodiesterase inhibitor for the treatment
22. Robertson I, András A. Prostanoids for intermittent claudication.
23. Ruffolo AJ, Romano M, Ciapponi A. Prostanoids for critical limb
24. Belch JJ, Bell PR, Creissen D, Dormandy JA, Kestler RC, McColl-
ium RD, Mizushima Y, Ruckley CV, Scutt JH, Wolfe JH. Ran-
domized, double-blind, placebo-controlled study evaluating the
efficacy and safety of AS-013, a prostaglandin E1 prodrug, in
patients with intermittent claudication. Circulation. 1997;
95(9):2298-2302.
25. Luzzi R, Belcaro G, Ippolito E, Dugall M, Cesaroni MR, Scoce-
cianti M, Errichi BM, Pellegrini L, Ciammaichella G, Ledda A,
Ricci A, Cornelli U, Feragalli B, Hosoi M, Corsi M, Simeone E,
Agus GB. [Severe intermittent claudication: PGE1 treatment. A
40-week registry, efficacy and costs]. Minerva Cardioangiol. 2012;
60(4):405-413.
26. [No authors listed]. Prostanoids for chronic critical leg ischemia. A
randomized, controlled, open-label trial with prostaglandin E1. The
ICAi Study Group. Ischemia Cronica degli Arti Inferiori. Ann
ra TO, Hiatt WR. Circulate investigators. Adjunctive parenteral
therapy with lipo-ecraprost, a prostaglandin E1 analog, in patients
with critical limb ischemia undergoing distal revascularization does
McNamara T, Neher M, Circulate investigators. Parenteral thera-
py with lipo-ecraprost, a lipid-based formulation of a PGE1 analog,
does not alter six-month outcomes in patients with critical leg
29. Creager MA, Pande RL, Hiatt WR. A randomized trial of iloprost
15-19.
30. Mohler ER 3rd, Klugherz B, Goldman R, Kimmel SE, Wade M.
Tre-
oprostinil sodium (Remodulin), a prostacyclin analog, in the treat-
ment of critical limb ischemic: open-label study. Vascular. 2006;
31. Fernandez B, Strootman D. The prostacyclin analog, treprostinil
sodium, provides symptom relief in severe Buerger's disease—a case
32. Ahimastos AA, Latouche C, Natoli AK, Reddy-luthmoodoo M,
Golledge J, Kingwell BA. Potential vascular mechanisms of
ramipril induced increases in walking ability in patients with inter-
33. Kurkkinsky AK, Levy M. Effect of ramipril on walking times and
quality of life among patients with peripheral artery disease and
intermittent claudication: a randomized controlled trial. Journal of
34. Ahimastos AA, Walker PJ, Askew C, Leicht A, Pappas E,
Blombery P, Reid CM, Golledge J, Kingwell BA. Effect of ramipril
on walking times and quality of life among patients with peripheral
artery disease and intermittent claudication: a randomized con-
35. Ahimastos AA, Lawler A, Reid CM, Blombery PA, Kingwell BA.
Brief communication: ramipril markedly improves walking ability in
patients with peripheral arterial disease: a randomized trial. Ann
36. Shahin Y, Crookston JR, Chetter IC. Randomized clinical trial of
angiotensin-converting enzyme inhibitor, ramipril, in patients with
37. Shahin Y, Barnes R, Barakat H, Chetter IC. Meta-analysis of
angiotensin converting enzyme inhibitors effect on walking ability
and ankle brachial pressure index in patients with intermittent
38. Brittenden J. Ramipril improves walking times and quality of life
in patients with stable intermittent claudication. Evid Based Med.
Michel JB. Involvement of the endothelin system in experimental
40. Herrick AL. Contemporary management of Raynaud's phenome-
on and digital ischemic complications. Curr Opin Rheumatol.
2011; 23(6):555-561.

