CASE REPORTS

Vertebral Synovial Sarcoma – Onset with Spinal Cord Compression Syndrome. Case Report

Laura Rebegea\(^1,2\), Dumitra Miron\(^3\), Mihaela Dumitru\(^1\), Dorel Firescu\(^4,5\), Mary Lupu\(^5,6\), Rodica Anghel\(^7\)

Rezumat
Sarcoamele sinoviale (SS) sunt rare. În timp ce >80% se dezvoltă la nivelul părților moi, și al extremităților, <5% apar la nivelul coloanei vertebrale, mediastin, cap și gât și retroperitoneal. Metastazele de SS nu sunt rare, apar cu predilecție în plămân, la nivel osos, hepatic.

Excizia formățiunii tumorale prin laminecție se însoțește de o rată crescută a recidivelor locale, de 60-90% la 2 ani de la tratamentul chirurgical.

SS reprezintă o provocare în diagnostic și tratament. Tratamentul este multimodal și cuprinde chirurgie, RTE, chimioterapie.

Datorită numărului limitat de cazuri publicate în literatura de specialitate, rezultatele pe termen lung ale SS cu localizare vertebrală sunt dificil de cuantificat.

Cuvinte cheie: sarcom sinovial spinal, metastaze osoase, tratament, radioterapie

Abstract

Synovial sarcomas (SS) are infrequent. While more than 80% occur at the level of the soft tissues and extremities, less than 5% occur in spine, mediastinum, head/neck and at the retroperitoneal level. SS metastases are not rare; they predominantly occur at the level of lungs, bones and liver.

Corresponding author:
Laura Rebegea
Clinical Department, Faculty of Medicine, Dunarea de Jos University of Galati, Department of Radiotherapy,”Sf. Ap. Andrei” Emergency Clinical Hospital, 177 Brailei Street, postal code: 800578, Galați, Romania.
E-mail: laura_rebegea@yahoo.com
The paper presents the case of a 65-year patient diagnosed in July 2015 with vertebral SS localised at the level of thoracic spine, T7-T10, complicated with spinal cord compression syndrome, who presented at the Neurosurgery Service of the Emergency County Hospital “Sf. Apostol Andrei” of Galati, where he underwent subtotal ablation (decompressive laminectomy with biopsy). Histopathology (HP) indicated synovial sarcoma, which was confirmed by the immunohistochemistry tests (IHC). Post-surgery, bone scintigraphy highlighted many secondary bone developments. The treatment included external radiotherapy (RTE), chemotherapy, biophosphonates. The patient remained paraparetic after surgery and RTE, and, twelve months after his being diagnosed, there are not any secondary visceral developments distinguished. Chemotherapy (CMT) was undergone by using Doxorubicin and Ifosfamide (1 cycle), the patient refusing cytostatic medicine afterwards. The patient lives, with multiple secondary bone developments, ECOG score: 3, undergoing biophosphonate treatment. In order to define the diagnosis of synovial sarcoma it is necessary to have histologic confirmation because it is difficult to differentiate SS lesion from other soft tissue tumors.

The excision of the tumoral formation by laminectomy is followed by an increase in local relapses (60-90%) within two years after surgery.

SS represents a challenge in both diagnostic and treatment. The latter is multimodal and entails surgery, RTE and chemotherapy.

Due to the limited number of cases published in the literature, the long-term results of the vertebral SS are difficult to quantify.

Keywords: spinal synovial sarcoma, bone metastases, treatment, radiotherapy

INTRODUCTION

Synovial sarcomas (SS) are rare. Less than 5% occur in spine, mediastinum, head and neck and at the retroperitoneal level and in approximately 85% of the cases occur at the level of the soft tissues and extremities. SS metastases are not rare, they occur predominantly at the level of lungs, bones and liver. Standard treatment consists in surgery, ideal, in large excision with negative margins, R0 (when is possible). For unrectable tumors, the therapeutic options include CMT and/or RTE.

CASE REPORT

We present the case of a 65-year patient hospitalized in July 2015 in Neurosurgery Service of the Emergency County Hospital “Sf. Apostol Andrei” of Galati with paraparesis suddenly installed, sphincter incontinency and spinal cord compression syndrome level T7-T8. Computed tomography exam (CT) at the thorax level evidenced an expansive, iodophile, hypodense formation T7-T9, non-homogenous with lytic phenomena and compressive on spinal channel. It is also worth mentioning that the disease started suddenly, in conditions of apparent health.

In the Neurosurgery Service of Emergency County Hospital “Sf. Apostol Andrei” of Galati the decompressive laminectomy and the biopsy of a tumoral formation at the T7-T10 level were performed. Due to tumoral expansion, subtotal resection was performed. Postsurgical evolution was favourable. The hematologic and biochemical constants are within normal ranges, except for ESR=115 mm/h. It was suspected a prostate tumour with secondary lesions, M1OSS, infirmed by HP tests; PSA=2.04ng/ml.

Histopathology reveals synovial sarcoma (Figure 1. a, b, c, d). It were recommended immunohistochemical tests, which revealed: CK (AE1/AE3) – negative, EMA-positive with isolated cells, SMA- negative, PS100- positive with isolated cells, MUC4- negative, CD99 – locally positive.

Two months after surgery, the patient presents to Oncology with severe bone pain, neurologic deficit and paraparesis for clinical-biological re-evaluation. ECOG score 3 upon admission. The comprehensive examination for the assessment of the local-regional expansion and at the distance included bone scintigraphy, CT scan – head, thorax, pelvic and abdomen.

Bone scintigraphy has revealed multiple points of hypercaptation of radiotracer, suggestive of multiple secondary bone developments: ribs, stern, thoracic spine, right femur diaphysis, scapulo-humeral, knee and left tibio-tarsal joints (Figure 2). It was recommended cerebral, thorax and abdominal CT scans which indicated:

Cerebral CT scan reveals an expansive hypodense iodophile formation, axial diameters 30/21 at the level of the right bone plate on which lytic phenomena exert with imprint on the right adjacent parietal cervical tissue. Right lytic lesions with 13 mm diameter, left frontal with 18 mm diameter and some newer ones disseminated at the level of the entire cranial bone structure, suggestive of expansive formations, hyperdense, intra-extra-neuraxial, supra/infratentorial.
Thorax + abdomen CT scan indicates at the thoracic level – microfibnodular lesion basal posterior bilateral, left pleural effusion 15 mm thick. At the abdominal-pelvic level – liver with no secondary developments, homogenous structure. Lytic lesions distributed at the level of the thoracic, lumbar, sacral and pelvic bone structure. Iodophilic soft tissue mass localised at the level of the left paraspinal muscle with 45 mm in diameter. Disseminated costal lytic lesions.

Clinically, paraparesis holds. Following the decision of the multidisciplinary diagnostic team, the first chemotherapy cycle is initiated with Doxorubicin and Ifosfamide and biophosphonates – zoledronic acid 4 mg.

In October 2015 he is readmitted to hospital with severe pain at the level of dorsal spine and it is decided by the multidisciplinary team to undergo RTE with palliative purpose and biophosphonate treatment. The patient undergoes external radiotherapy (RTE) with palliative purpose on the T6-T7-T8-T9-T10 region in DT=30 Gy10 fr/2 weeks. A second degree antialgic treatment, corticotherapy is also administered.

In December 2015 he is readmitted to hospital with cephalalgia, high intracranial pressure syndrome (HIC), walking disorder, pain at the level of the right coxofemoral joint, affected general health, haematologically balanced, apyretic.

The medical assessment by ultrasound indicates micro-nodular liver, hyperechoic nodule of 13 mm at the third segment level, calculous cholecystitis. Biologically, the patient presents secondary anaemia, (Hb=10.4 mg/dl), biochemical constants within normal ranges.

The cranial radiogram undergone indicates multiple spherical and ovoid radiotransparent images in various sizes at the level of the cranial bone, which were...
also revealed by the cranial CT-scan of October 2015 (Figure 3 A, B).

Cerebral depletive treatment is administered with Mannitol 20%, corticotherapy and RTE is performed in DT=20Gy/5 fr./ 5 days, d/fr=400 cGy for the secondary lesions at the level of the cranial bone. Also, RTE is performed in the right femoral head region DT=20Gy/5 fr./7 days, d/fr=400 cGy. Osteoclast inhibitors are administered.

The patient and his family refuse further CMT administration and he continues the biophosphonate treatment.

In June 2016 he is readmitted to hospital with generalised bone pain. Clinically, paraparesis still holds, ECOG 3, haemodynamically balanced. Spine control CT scan with intravenous contras was performed and indicates multiple moderately iodophile osteolytic formations at the dorsal-lumbar level. At the level of the T7-T9 there is a significant change of structure with non-iodophile osteolytic formations and osteosclerosis, the reduction of the AP diameter of the medullary channel at T8 level by minimum 14 mm, without interruption in the posterior contour of the vertebra at this level. No pathological contrast enhancement at the level of the medullary channel. Right–posterior laminectomy at the T7-T10 level, without lung secondary lesions (Figure 4, a, b, c, d, e, f, g).

Haematological and biochemical constants within normal ranges, except for Hb=8.9 mg/dl and Leukocytes=3700/mm³ rebalanced with 1 unit resuspended erythrocyte concentrate. RTE is performed in the left tibio-tarsal region, DT=20Gy/5fr/5 days, D/fr.=400cGy.

At present, twelve months since his being diagnosed, the patient presents functional impotence, ECOG 3, and undergoes treatment with osteoclast inhibitors and antalgic treatment second degree, tramadol, corticotherapy. No further visceral secondary developments.

DISCUSSIONS

Synovial sarcoma (SS) is an aggressive malignant neoplasm of soft tissue which frequently occurs in the large joints of the upper and lower extremities in young adults, with a peak incidence in the third decade. Approximately, 30% of cases occur before the age of 20, and 90% before 501,2. In our case, the patient exceeded this age, being 66 years old.

Synovial sarcomas account for 7-10% of all soft-tissue sarcomas and less than 1% of all malignancies 3,4. Although the synovial sarcoma denomination suggests a synovial histological origin, less than 5% cases originate in joints. Etiology is unknown, apparently it is an epithelial phenotype3.

The anatomical distribution of synovial sarcomas is well documented, with 85% located in the extremities5, up to 5% of these tumours are encountered in the body axis including the spine, mediastinum, retroperitoneum, and head/neck regions6 and just 3% located in the head and neck region7. Fang, et al7 confirmed the low incidence of synovial sarcoma in the spine in their review of 191 cases.

Puffer et al. published in 2011 a report of 3 cases and a review of 14 cases of spinal SS published in special literature since 1986. Of these 17 patients with spinal SS, 10 were within the paraspinal musculature (with most having foraminal extension), 3 were intradural and associated with spinal nerve roots, 2 were metastatic lesions (one to bone, the other intramedullary), 1 was intraspinal epidural and 1 was a bony/lytic lesion. The affected spinal sites were cervical in 4 cases, dorsal in 7 cases, lumbar in 6 cases.
Vertebral Synovial Sarcoma – Onset with Spinal Cord Compression Syndrome. Case Report

At the molecular level, it has been reported that microRNAs (miRNAs) can play an important role in the cancro-genesis of some neoplasia, and when deregulated, depending on their mRNA targets, they may act to down regulate tumour suppressor genes and give a growth advantage to tumour cell lines. Th e overexpression of a microRNA, miR-183 act like oncogene own regulatio n of EGR1 translation, a tumour suppressor that is correlated strongly with tumour formation and transformation processes when its levels are depleted.

Synovial sarcomas are usually treated aggressively with wide excision with negative margins, (when is possible) often including removal of adjacent muscle groups and even total amputation; a 5 cm margins define a negative margin, but in many cases this would encompass the critical structures such spinal cord. Surgery is followed by radiotherapy, chemotherapy or

Figure 4A, B, C, D, E, F, G. Spine CT scan. Significant change of structure with non-iodophile osteolytic formations and osteosclerosis at T7-T9 level, reduction of the AP diameter of the medullary channel at T8 level by minimum 14 mm, without interruption in the posterior contour of the vertebra at this level. Right-posterior laminectomy at the T7-T10 level.

The non-specific nature of the symptoms may initially be interpreted as more commonly encountered soft tissue entities such as bursitis and myositis. Synovial sarcoma of the spine is quite uncommon and early diagnosis may be difficult without advanced imaging. SS appears as a well demarcated, hypodense mass with homogenously or heterogeneously enhancement, on CT imaging, making it easy to confuse with other benign or malignant tumours. For detecting SS, MRI has proven to be the superior modality, comparative with CT imagining.

SS is associated with a balanced reciprocal translocation t(X:18) (p11:q11). SS presents in a variety of histopathological forms, from monophasic, being uniformly comprised of spindle cells, to biphasic, with epithelial and spindle cell components.

Due to histological variety, SS can be mistaken for numerous other mesenchymal or non-mesenchymal tumours, making immunohistochemical and molecular studies important in achieving the correct diagnosis.

At the molecular level, it has been reported that microRNAs (miRNAs) can play an important role in the cancro-genesis of some neoplasia, and when deregulated, depending on their mRNA targets, they may act to down regulate tumour suppressor genes and give a growth advantage to tumour cell lines.

The overexpression of a microRNA, miR-183 act like oncogene own regulatio n of EGR1 translation, a tumour suppressor that is correlated strongly with tumour formation and transformation processes when its levels are depleted.

Synovial sarcomas are usually treated aggressively with wide excision with negative margins, (when is possible) often including removal of adjacent muscle groups and even total amputation; a 5 cm margins define a negative margin, but in many cases this would encompass the critical structures such spinal cord. Surgery is followed by radiotherapy, chemotherapy or
both to help control metastasis15. In study of Carrillo and Rodrigues is mentioned a high rate of local recurrence between 60-90\% after limited excision, in the first 2 years after surgery16.

Adjuvant radiotherapy may decrease the local recurrence rate. Chemotherapy agents, Doxorubicin and Ifosfamide, are used in the treatment of soft tissues sarcomas. High dose Ifosfamide has been associated with increased disease free survival in adult patients with high-risk primary SS17.

Local recurrence occurs in up to 50\% of cases, usually within 2 years although some studies have shown the 5 year local and distant recurrence rates to be 12\% and 39\%, respectively18,19. Metastatic recurrence is determined by tumour grade, tumour size (>5 cm) and histopathology19. The main relapse causes are lung and bone metastases which occur in the first 2 years from treatment. Other metastases sites are liver and regional lymph nodes metastases which can occur in 20\% of cases.

Our patient developed bone metastases for which radiotherapy and bisphosphonates was performed and he is still alive at 12 months from diagnosis.

References

18. Elber FC, Brennan MF, Elber FR, Eckardt JJ, Grobmyer SR, Riel

CONCLUSION

SS is problematic both in terms of diagnostic and treat-
ment. Establishing the diagnostic is difficult. Though rare, vertebral synovial sarcomas often metastasise. The main therapeutic means is surgery with negative resec-
tion margins, whenever possible, and unless the critical structures are affected. During multimodal treatment, radiotherapy and chemotherapy may determine improve-
ments in the survival rate.

Conflict of interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

Author contribution: All authors contributed equally to this work.